A. 圆球质量公式
圆球质量=圆球密度*圆球体积
密度你得从物理书上找答案
球体体积是
V=4/3*π*R^3
球体体积的推导等学过高数就知道了。如果想知道初等方法如何推导的话再hi我
B. 请问一下,匀质球体质量为M,半径为R,转轴沿直径的转动惯量怎么求
不知道题主有没有学过微积分,如果学过的话计算就比较简单了:
C. 装满一立方米空间的球体质量与球体大小有关系吗
装满一立方米空间的球体质量与球体大小是有关系的。考虑1立方米正方体,直径大于0.633
的球体,都只能加一个,而直径小于0.633的球体,至少可以放2个(对角线放置)。随着球体的不断缩小,可以放置的数量也逐渐增多,可以无限接近最密排列(面心立方或者密排六方)的74.05%
D. 求大神~怎么用三重积分求球体质量
转化成球面坐标弄错了
第一个变量是对的
后面两个错了
具体过程如下:
E. 假如有一颗直径1厘米的球体,质量比太阳的质量还大,会出现什么现象
会是一个与黑洞类似的物体。
黑洞是大质量恒星演化到末期,通过超新星爆发形式引力坍缩的恒星核,由于其巨大的质量和极小的半径,使它的表面脱离速度超过光速,成为一颗看不见的天体。任何物质(包括光)都无法逃离,任何物质一旦进入它的引力范围(视界)也无法脱离它的引力,只能落入其中。好像是宇宙中的一个黑色的无底洞,所以叫做“黑洞”。
理论上,任何大小和质量的黑洞都有可能存在,只要把质量压缩到一个合适的半径内。这个半径叫做“史瓦西半径”。
根据物理学公式计算,如果把太阳全部的物质都压缩到一个大约3公里半径的球体内,那么太阳就会变成一个黑洞。即太阳的史瓦西半径为大约3公里。如此考虑,把太阳质量继续压缩到几厘米半径内,也不是不可以想像的,应该也是如同黑洞一般的存在。
由于目前所有的物理学定律在黑洞内部全部失效,所以不知道在黑洞内部物质是以什么形态存在的,但其中一定存在物质(这是因为它有强大的引力)。
类似地,如果把地球的质量压缩到大约9毫米半径内,地球也可以变成一个黑洞。
F. 球体的质量怎么算
均匀的球:4/3×pi×R×R×R×密度
密度仅与R有关的球:4×pi×R×R×密度(密度是R的函数),从0到R积分
G. 两个球体、质量一样、密度1比2、求体积比
根据,密度等于质量除以体积 得 质量等于体积乘以密度
要保持质量不变且密度比为1比2 所以体积比就为2比1
因为 质量=密度*体积=2*1=1*2=2
H. 假设地球是一半径为R、质量分布均匀的球体,其密度为ρ.一矿井深度为d.已知质量分布均匀的球壳对壳内物
令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g=G
M |
R2 |
4 |
3 |
GM |
R2 |
Gρ
| ||
R2 |
4 |
3 |
4 |
3 |
I. 如下图,两个天平都平衡,则三个球体的质量等于多少个立方体的质量【【有图
2球=5柱 ==》6球=15柱
2方=3柱 ==》10方=15柱
所以6球=10方 即3球=5方
J. 球体质量公式推理过程
首先用求的体积公式三分之四πr的立方,求出v,再用密度公式p=m/v就可以了